•home > 연구분야 > 발표논문


Establishment and characterization of hypomethylating agent-resistant cell lines, MOLM/AZA-1 and MOLM/DEC-5

2018-05-17 14:39
Hur, E. H., Jung, S. H., Goo, B. K., Moon, J., Choi, Y., Choi, D. R., ... & Lee, J. H. (2016). Establishment and characterization of hypomethylating agent-resistant cell lines, MOLM/AZA-1 and MOLM/DEC-5. Oncotarget, 5.

DOI: 10.18632/oncotarget.14342
IF(2016): 5.008


Two hypomethylating agents (HMAs), azacitidine and decitabine, have demonstrated clinical activities in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML); however, potential problems include development of acquired resistance. HMA-resistant patients have very poor prognosis and this cohort of patients constitutes an important area of research. To understand the mechanisms underlying HMA-resistance and to overcome it, we established an azacitidine-resistant cell line, MOLM/AZA-1 and a decitabine-resistant cell line, MOLM/DEC-5 using MOLM-13. For cytogenetic characterization, we performed microarray-based comparative genomic hybridization (array-CGH), which identified a total of 15 copy number alterations (CNAs). Among these CNAs, eight regions in HMA-resistant cell lines showed CNA patterns distinct from the parental MOLM-13 genome. Single nucleotide polymorphism (SNP) microarray was also performed to obtain a more reliable interpretation of the identified CNAs, and all HMA-resistance-specific CNAs except one detected by array-CGH were successfully validated. In addition to CNAs, copy neutral loss of heterozygosity and mosaic loss events were identified in HMA-resistant cell lines. In our resistant cell lines, MDR-1 was not overexpressed, while DNMT3b was upregulated. Azacitidine and decitabine did not inhibit DNMT1, DNMT3a, or DNMT3b in both HMA-resistant cell lines, while they inhibited the enzymes in parental MOLM-13. We also developed mouse xenograft models using MOLM/AZA-1 and MOLM/DEC-5. Our in vitro and in vivo models of HMA-resistant cell lines will provide clues for the elucidation of molecular mechanisms related to the development of resistance to HMA and tools for the application of novel therapeutics for AML and MDS.