•home > 연구분야 > 발표논문

발표논문


Somatic mutations predict outcomes of hypomethylating therapy in patients with myelodysplastic syndrome.

작성자
pmrc
작성일
2018-05-17 14:36
조회
273
Jung, S. H., Kim, Y. J., Yim, S. H., Kim, H. J., Kwon, Y. R., Hur, E. H., ... & Lee, J. H. (2016). Somatic mutations predict outcomes of hypomethylating therapy in patients with myelodysplastic syndrome. Oncotarget.

DOI: 10.18632/oncotarget.10526
PMID: 27419369

IF(2014):6.359

ABSTRACT

Although hypomethylating therapy (HMT) is the first line therapy in higher-risk myelodysplastic syndromes (MDS), predicting response to HMT remains an unresolved issue. We aimed to identify mutations associated with response to HMT and survival in MDS. A total of 107 Korean patients with MDS who underwent HMT (57 responders and 50 non-responders) were enrolled. Targeted deep sequencing (median depth of coverage 1,623X) was performed for 26 candidate MDS genes. In multivariate analysis, no mutation was significantly associated with response to HMT, but a lower hemoglobin level (<10g/dL, OR 3.56, 95% CI 1.22-10.33) and low platelet count (<50,000/μL, OR 2.49, 95% CI 1.05-5.93) were independent markers of poor response to HMT. In the subgroup analysis by type of HMT agents, U2AF1 mutation was significantly associated with non-response to azacitidine, which was consistent in multivariate analysis (OR 14.96, 95% CI 1.67-134.18). Regarding overall survival, mutations in DNMT1 (P=0.031), DNMT3A (P=0.006), RAS (P=0.043), and TP53 (P=0.008), and two clinical variables (male-gender, P=0.002; IPSS-R H/VH, P=0.026) were independent predicting factors of poor prognosis. For AML-free survival, mutations in DNMT3A (P<0.001), RAS (P=0.001), and TP53 (P=0.047), and two clinical variables (male-gender, P=0.024; IPSS-R H/VH, P=0.005) were independent predicting factors of poor prognosis. By combining these mutations and clinical predictors, we developed a quantitative scoring model for response to azacitidine, overall- and AML-free survival. Response to azacitidine and survival rates became worse significantly with increasing risk-scores. This scoring model can make prognosis prediction more reliable and clinically applicable.